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An effective sufficient condition for the instability of a certain class of one-dimensional weakly non- 

uniform dynamical systems of arbitrary nature is formulated. On the basis of the proposed condition 

the instability of an infinitely extended weakly non-uniform elastic pipe filled with moving fluid is 

considered. 

1. CONSIDER a system whose parameters depend on a single spatial variable x and do not 
depend on time t. Suppose this dependence is described by some typical length-scale L. There 
is a certain fundamental state of the system Y(x) whose stability with respect to small 
perturbations with characteristic wavelength h it is required to investigate. It is assumed that 
the parameters of the system under investigation change fairly slowly, i.e. E = hlLd1. We 
introduce the slow variable X=FX. Let the behaviour of small perturbations ~(x, X, t) be 
described by the equation 

i$, R(X), t%(X),... v(x.X,r)=O 1 (1.1) 

where D is a linear operator and R(x) is the system parameter vector. As usual, a solution of 
Eq. (1.1) is sought in the form $(x, X)e-“, where o EC is an unknown eigenfrequency and 
9(x, X) is an eigenfunction satisfying appropriate boundary conditions. 

The fundamental state Y(x) is considered to be stable [l] if for all possible eigenfrequencies 
Imo c 0, and unstable if at least one eigenfrequency o, exists such that 

Imw, >O (1.2) 

“Freezing” X in Eq. (1.1) and taking $((x, X) = Ae” we obtain the local dispersion relation 

D(k,o,R(X),O ,... )=0 (1.3) 

One can argue that Eq. (1.3) corresponds to some fictitious uniform system with parameters 
corresponding to the given X. Such a uniform system can be investigated for the presence of 
absolute instability [2, 31. In [4, 51 the following approach is proposed for finding the 
eigenfrequencies w, . A solution k,(X) of equation &B( k, X)l& = 0 (indicating the presence 
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of absolute instability) is chosen in some appropriate manner [3] for a fixed value of X. Here 
w(k, X) is a solution of Eq. (1.3). The function o,,(X) = o&(X), X) is also defined, and we 
consider the analytic continuation of this function in the complex X plane. If the closest 
singularity of the function o,,(X) to the ReX axis is a saddle point X,, i.e. a point at which the 
condition &+,(X,)l~X =0 is satisfied, then an eigenfrequency o. = o, +0(e), exists [4, 51 
where o, = 0,(X,). In particular, if Imw, > 0, the system under consideration is unstable in the 
sense of definition (1.2). 

2. The criterion given above can serve as a sufficient condition for instability for a wide 
range of dynamical systems. However, in general it requires an investigation of the behaviour 
of the function oO(X) in the complex X plane, which can present serious difficulties when the 
form of this function is complicated. In this paper, we present instability criteria for a class of 
systems where a conclusion of instability can be obtained as a result of investigating system 
parameters for purely real values of X. We have the following theorem. 

Theorem. Suppose a dynamical system has the following properties: 
1. All system parameters R,(X), . . . , R,(X) are analytic functions in some domain of the 

complex X plane that includes the real X axis. 

2 VXEFa: ImRj(X)=O, j=l,...,n 

3. %ER: &(X,)=0. j=l,..., n 

4. The uniform system with parameters &(X0), . . . ,&(X0) is absolutely unstable. 
Then this system is unstable in the sense of (1.2). 

Proof. In the given system the function o&X) can be represented in the form o,,(X)= 
Q&(X), . * * 9 R,(X)), whence 

From assumptions l-3 it follows that 

$X0)=0, j=l,...,n 

(2.1) 

(2.2) 

Then from (2.1) and (2.2) we find that &$,(X,)/8X = 0). This means that X,, is a saddle point 
of the function oO(X). By assumption 4 we find that in accordance with the definition of 
oO(X), Imo,(X,) > 0. This also means that the system considered is unstable in the sense of 
definition (1.2). 

3. We will illustrate the application of this theorem, together with the criteria of [4,5], to the 
problem of the behaviour of small bending oscillations of an elastic tube that is infinitely 
extended in both directions and filled with moving fluid. Suppose that the parameters of the 
system under consideration depend only slightly on the spatial variable x and do not depend 
on the time t. It is assumed that the tube deformation can be reduced to the bending of its axis, 
with the transverse sections of the tube remaining unchanged. The equation for the deflection 
of the tube &, t) has the form [7] 
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where PI(x) and Pz(x) are the mass per unit length of the tube and fluid, respectively, D(x) is 
the bending rigidity of the tube, and U(X) is the velocity of the fluid. 

For each fixed value of X = EX one obtains the dispersion relation 

D(X)k4 -u2(X)k2+2p2(X)u(X)6&-02(p,(X)+p2(X))=0 

For fixed X this equation corresponds to a tube with constant parameters. It was established 
in [8] that a uniform system of this type is linearly unstable for all values of the parameters. It 
was also found that the instability is absolute if 

P2W ’ gP, (X) (3.1) 

We will impose an additional restriction on the form of the system parameters. We shall 
assume that the tube is circular, with external radius R(X) and internal radius r(X), and 
consists of a uniform material of density pr. We will assume that the 
sible, and of density pF. Then the system parameters have the form 

fluid is ideal, incompres- 

D(X)=~~(R4(X)-r4(X)). u(X)=Q/(xpFr2(X)) 

where R is Young’s modulus of the tube and Q is the mass flow rate of the fluid through the 
tube. Thus all system parameters are functions of just R and r. 

We will use the theorem proved in Sec. 2 to investigate the circular tube described above. 
Suppose that on the real X axis there is some region D in which the absolute instability 
condition (3.1) for a uniform system is satisfied. Suppose also that at some point in the region 
D the functions R(X) and r(X) simultaneously reach extremal values. Then from the theorem 
one can conclude that the tube is unstable. 

As specific examples of the above situation we have circular tubes with constant internal or 
external radii, and also tubes with walls of constant thickness. If such tubes have sections 
satisfying condition (3.1), then they are unstable. 

We will also consider a ease of tube instability in which to apply the instability conditions of [4, 51 one 

must investigate the behaviour of the function o,,(X) in the complex X plane. Suppose that in dimension- 
less variables the functions R(X) and r(X) have the following form 

R(X)=q +b/((X+c)Z+d) 

r(X)=u2-b/((X-c)2+d) 

where a,, 4, b, c and d are real constants. For c#O the parameters of the system under consideration 
obviously do not satisfy the conditions of the theorem given in Section 2. 

In the problem under consideration the function o,,(X) has the form 

y2 03 we=- D(X) 
16 Pl(x)+Pzw) 

U@(X)-6B2(X)+20(X)) 

Because the form obtained for the function w,,(X) is somewhat complex, we investigated it numer- 
ically. The shape of the function wO(X) in the neighbourhood of the real X axis was investigated over a 
wide range of parameter values. For all parameter values considered it was found that if the absolute 
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instability condition (3.1) was satisfied on some section of the real X axis, then near to this section in the 

complex X plane a saddle point X, of the function w&X) exists, with Imw,(X,) > 0. Thus the system 

under consideration is unstable according to the criteria of [4,5]. 
Figure 1 shows graphs of the function Imw,(X) (the solid curve) and p,(X)lp,(X)-l/8 (the dashed 

curve) for real X with a, = 1.995, a, = 2.005, b = 0.015, c = 1, d = 4. It can be seen from these graphs that 
the absolute instability condition for the uniform system corresponding to a given X is identical with (3.1). 
Figure 2 shows the curves Imw,(X) = const in the complex X plane, obtained by numerically investigating 
q,(X). The plus (minus) signs indicate regions of growing (decreasing) Imw,. The lines Imo, =0 are 
marked with a zero. At the saddle point located at X, =(-0.25; -0.026) we have Imw,(X,)=0.0121> 0, 

which indicates the instability of the system. 
We note in conclusion that, as has been shown in [9], the instability criteria formulated in this paper, 

like the criteria in [4, 51, are only sufficient for instability, and the non-satisfaction of these criteria does 

not imply that the system investigated is stable. 
This work was supported by the Russian Fund for Fundamental Research (93-013-17355). 
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